$\textrm{Positive Props}$ |
$A ::= \dns B \celse 0 \celse A \oplus A \celse p^+$ |
$\textrm{Negative Props}$ |
$B ::= \ups A \celse \top \celse B \& B \celse A \imp B \celse [\alpha]B \celse p^-$ |
$\textrm{Positive Actions}$ |
$\alpha ::= \dns \beta \celse 0 \celse \alpha \oplus \alpha \celse 1 \celse \alpha \cdot \alpha \celse ?A \celse \pi^+$ |
$\textrm{Negative Actions}$ |
$\beta ::= \ups \alpha \celse \top \celse \beta \& \beta \celse \alpha \llto \beta \celse \alpha \rrto \beta \celse \pi^-$ |
And there are four interpretation functions, with varying numbers of arguments,
but all of them are kripke worlds:
\[A_v \qquad B^t_{wv}\qquad \alpha^u_v \qquad \beta^{tu}_{wv} \]
And we postulate some linear token $\#$ and define:
\[ (\ups \alpha)^{tu}_{wv} = \ups (\# \otimes \alpha^u_v) \]
\[ (\dns \beta)^{u}_{v} = \dns \forall tw.\ups (\# \lol \beta^{tu}_{wv}) \]
Ah... No, I'm kind of confused at this point. My selection of which syntactic categories get which arguments doesn't seem coherent enough. Oh well!