jcreed blog > Classical Logic in Intuitionistic Logic

Classical Logic in Intuitionistic Logic

This is very much "not new content", but I had a conversation recently where I tried to summarize the way I prefer to think about the embedding of classical logic into intuitionistic logic --- a way that relies on polarization of propositions --- and realized that my memory it was rusty, and I didn't have a great place to point to for a reasonably concise and complete summary how it goes.

So this post is meant to be that.

In a slogan, the translation can be summarized as follows:

Classical Propositional Logic

Here is the polarized syntax of classical propositional logic. I'm using linear logic symbols to distinguish the different polarities of the conjunctions ($\otimes, \&, 1, \top$) and the disjunctions ($\oplus, \par, 0, \bot$) I'm writing negation the same way for either polarity. Using different symbols might be clearer, but I don't think there's any really suggestive conventional set of symbols already established. Polarity shifts are written $\ups$ and $\dns$. Atomic propositions are $a^+(x)$ and $a^-(x)$. They may take an argument $x$. We don't really get into the details of where first-order terms come from here; we could introduce quantifiers, or just imagine that some first-order constants exist. \[ \begin{array}{rll} \textrm{Positive Props} & P& ::= P \otimes P \celse P \oplus P \celse 1 \celse 0 \celse \lnot N \celse \dns N \celse a^+(x)\\ \textrm{Negative Props} & N& ::= N \& N \celse N \par N \celse \top \celse \bot \celse \lnot P \celse \ups P \celse a^-(x)\\ \textrm{Props} & A, B, C & ::= P \celse N \end{array} \] For simplicity of stating the relevant theorem, we can have a non-focused proof theory over this polarized syntax. Introducing focusing makes carrying out the proof of that theorem much more straightforward, however, at the cost of additional fiddliness in defining what valid contexts are.

In the non-focused case, we say the the judgment of classical logic is $\Gamma \cprov \Delta$, thought of as meaning something like "The assumptions $\Gamma$ entail one of the conclusions $\Delta$", or "It cannot be that everything in $\Gamma$ is true, and everything in $\Delta$ is false". \[ \begin{array}{rll} \textrm{Context} & \Gamma, \Delta& ::= \cdot \celse \Gamma, A \\ \end{array} \] The sequent rules are as follows: \[ {\Gamma_1 \cprov P_1, \Delta_1 \qquad \Gamma_2 \cprov P_2, \Delta_2 \over\Gamma_1, \Gamma_2 \cprov P_1\otimes P_2, \Delta_1, \Delta_2 } \qquad {\Gamma, P , P' \cprov \Delta \over \Gamma, P\otimes P'\cprov \Delta } \] \[ {\Gamma \cprov P_i ,\Delta \over\Gamma \cprov P_1\oplus P_2,\Delta } \qquad {\Gamma, P \cprov\Delta \qquad \Gamma, P' \cprov\Delta \over\Gamma, P\oplus P'\cprov\Delta } \] \[ { \over \cdot \cprov 1 } \qquad {\Gamma \cprov \Delta \over \Gamma, 1\cprov \Delta } \] \[ {\text{[no right rule for $0$]}} \qquad { \over\Gamma, 0\cprov \Delta } \] \[ {\Gamma, N \cprov \Delta \over \Gamma \cprov \lnot N, \Delta} \qquad {\Gamma \cprov N, \Delta \over \Gamma, \lnot N \cprov \Delta} \] \[ {\Gamma \cprov N,\Delta \over \Gamma \cprov \dns N, \Delta} \qquad {\Gamma, N \cprov \Delta \over \Gamma, \dns N \cprov \Delta} \] \[ {\over a^+(x) \cprov a^+(x)} \] \[ {\Gamma \cprov N ,\Delta \qquad \Gamma \cprov N',\Delta \over\Gamma \cprov N\& N',\Delta } \qquad {\Gamma, N_i \cprov\Delta \cprov\Delta \over\Gamma, N_1\& N_2\cprov\Delta } \] \[ {\Gamma_1, N_1 \cprov \Delta_1 \qquad \Gamma_2, N_2 \cprov \Delta_2 \over\Gamma_1, \Gamma_2, N_1\par N_2 \cprov \Delta_1, \Delta_2 } \qquad {\Gamma \cprov N , N', \Delta \over \Gamma\cprov N\par N',\Delta } \] \[ {\Gamma \cprov \Delta \over \Gamma\cprov\bot, \Delta } \qquad { \over \bot \cprov \cdot } \] \[ { \over\Gamma\cprov \top, \Delta } \qquad {\text{[no left rule for $\top$]}} \] \[ {\Gamma, P \cprov \Delta \over \Gamma \cprov \lnot P, \Delta} \qquad {\Gamma \cprov P, \Delta \over \Gamma, \lnot P \cprov \Delta} \] \[ {\Gamma \cprov P,\Delta \over \Gamma \cprov \ups P, \Delta} \qquad {\Gamma, P \cprov \Delta \over \Gamma, \ups P \cprov \Delta} \] \[ {\over a^-(x) \cprov a^-(x)} \]

Intuitionistic Propositional Logic

To represent classical logic, we don't even need to define all of intuitionistic logic. Just the usual positive propositional connectives, and a single negative proposition: negation. \[ \begin{array}{rll} \textrm{Sign} & s& ::= {+} \celse {-} \\ \textrm{Positive Props} & P& ::= P \otimes P \celse P \oplus P \celse 1 \celse 0 \celse \dns N \celse b^+(x, s)\\ \textrm{Negative Props} & N& ::= \lnot P\\ \textrm{Props} & A, B, C & ::= P \celse N \end{array} \] \[ \begin{array}{rll} \textrm{Context} & \Gamma& ::= \cdot \celse \Gamma, A \\ \textrm{Right Side} & J& ::= N\celse \bot \\ \end{array} \] The sequent rules are as follows: \[ {\Gamma_1 \prov P_1 \qquad \Gamma_2 \prov P_2 \over\Gamma_1, \Gamma_2 \prov P_1\otimes P_2 } \qquad {\Gamma, P , P' \prov J \over \Gamma, P\otimes P'\prov J } \] \[ {\Gamma \prov P_i \over\Gamma \prov P_1\oplus P_2 } \qquad {\Gamma, P \prov J \qquad \Gamma, P' \prov J \over\Gamma, P\oplus P'\prov J } \] \[ { \over \cdot \prov 1 } \qquad {\Gamma \prov J \over \Gamma, 1\prov J } \] \[ {\text{[no right rule for $0$]}} \qquad { \over\Gamma, 0\prov J } \] \[ {\Gamma \prov N \over \Gamma \prov \dns N} \qquad {\Gamma, N \prov J \over \Gamma, \dns N \prov J} \] \[ {\over b(x,s) \prov b(x,s)} \] \[ {\Gamma, P \prov \bot \over \Gamma \prov \lnot P} \qquad {\Gamma \prov P \over \Gamma, \lnot P \prov \bot} \]

The Translation

We a translations on propositions depending on their polarity. If $P$ is a positive classical proposition, then $P^+$ is a positive intuitionistic proposition. If $N$ is a negative classical proposition, then $N^+$ is a positive intuitionistic proposition. \[\begin{array}{l|l} P & P^+\\ \hline P_1 \otimes P_2 & P_1^+ \otimes P_2^+ \\ P_1 \oplus P_2 & P_1^+ \oplus P_2^+ \\ 1 & 1\\ 0 & 0\\ \lnot N & N^+ \\ \dns N & \dns \lnot N^+\\ a^+(x) & b^+(x, +) \end{array} \qquad \begin{array}{l|l} N & N^+\\ \hline N_1 \par N_2 & N_1^+ \otimes N_2^+ \\ N_1 \& N_2 & N_1^+ \oplus N_2^+ \\ \bot & 1\\ \top & 0\\ \lnot P & P+ \\ \ups P & \dns \lnot P^+\\ a^-(x) & b^+(x, -) \end{array} \] To translate classical contexts, we need to pay attention to whether we're translating a context on the left or on the right, and then pay attention to the polarity of the proposition we're translating. For a context $\Gamma$, we define $\Gamma^L$ and $\Gamma^R$ as follows: \[\begin{array}{l|l|l} \Gamma & \Gamma^L & \Gamma^R\\ \hline \cdot & \cdot & \cdot\\ \Gamma, P & \Gamma^L, P^+ & \Gamma^R, \lnot P^+ \\ \Gamma, N & \Gamma^L, \lnot N^+ & \Gamma^R, N^+ \\ \end{array} \]

The Theorem

Theorem $\Gamma \cprov \Delta$ if and only if $\Gamma^L, \Delta^R \prov \bot$.