The tl;dr is that "algebraic geometry is like unrestricted logic" (as opposed to linear logic).
Is there some kind of "substructural algebraic geometry" where \[ \ups ( P_1 \otimes P_2) \equiv (\ups P_1) \amp (\ups P_2) \] fails to hold?
Now we make a suggestive definition, which makes elementhood in a prime ideal resemble logical entailment. Define $f_1, \ldots, f_n \tri \pp$ to mean $f_1\cdots f_n \in \pp$, using the multiplication operation of the ring $R$. Let $\Gamma$ stand for an arbitrary list of elements in $R$.
Lemma: The relation $\tri$ satisfies weakening and contraction laws as follows:
\[{\Gamma \tri \pp \over \Gamma, f \tri \pp }\mathsf{weak} \qquad {\Gamma, f, f \tri \pp \over \Gamma, f\tri \pp}\mathsf{contr}\]
Proof: Weakening follows merely because $\pp$ is an ideal. If $\prod \Gamma \in \pp$, then by axiom
4 of being an ideal, we have $\left(\prod\Gamma\right) \cdot f \in \pp$ as well. $\cqed$
Contraction follows because $\pp$ is prime. For suppose $(\prod \Gamma)\cdot f \cdot f \in \pp$. Since $\pp$ is prime, either $\prod \Gamma \in \pp$, or $f \in \pp$, or (redundantly!) $f \in \pp$. In any of those cases, we can apply axiom 4 of the definition of being an ideal to find that $(\prod \Gamma)\cdot f \in \pp$.
More generally, if we have a ring $R$, we can consider its spectrum $\spec(R)$, a topological space whose underlying set is the set of all prime ideals $\pp \subseteq R$. The functions $V$ and $I$ generalize to:
They can be defined as follows, assuming $S \subseteq R$ and $X\subseteq \spec(R)$: \[I(X) = \{ f \in R \st \forall \pp \in X . f \in \pp \}\] \[V(S) = \{ \pp \in \spec(R) \st \forall f \in S . f \in \pp \}\] The condition that $f$ is zero at a point $p$ is replaced by the condition that the $f$ belongs to the ideal $\pp$.
Let us change notation slightly to resemble the logical construction immediately below. Instead of thinking in terms of subsets of $R$ and $\spec(R)$, let us treat $S$ (and $IX$) as predicates on $R$, and $X$ (and $VS$) as predicates on $\spec(R)$. We continue to use the notation $f \tri \pp$ for $f \in \pp$. Now observe the resemblance of \[(IX)(f) = \forall (\pp : \spec(R)) . X(\pp) \imp (f \tri \pp) \] \[(VS)(\pp) = \forall (f : R) . S(f) \imp (f \tri \pp) \] to the clauses for the shift operators in the constructive semantics of a polarized logic: \[\sem{\dns N}(\alpha) = \forall \phi . \sem N(\phi) \imp (\alpha \tri \phi)\] \[\sem{\ups P}(\phi) = \forall \alpha . \sem P(\alpha) \imp (\alpha \tri \phi)\]
We interpret
Observe that the standard lifting of ring multiplication to subsets is the definition \[ S_1S_2 = \{f \in R \st \exists f_1, f_2. (f = f_1 f_2) \land (S_1)(f_1) \land (S_2)(f_2) \}\]
Let's compute the interpretation of $\ups ( P_1 \otimes P_2)$. \[\sem{\ups ( P_1 \otimes P_2)}(\pp) \iff \forall (f:R) . \sem{ ( P_1 \otimes P_2)}(f) \imp (f \in \pp) \] \[\iff \forall (f:R) . ( \exists (f_1,f_2:R).(f = f_1f_2) \land \sem{P_1}(f_1) \land \sem{P_2}(f_2)) \imp (f \in \pp) \] \[\iff \forall (f_1,f_2:R). \sem{P_1}(f_1) \imp \sem{P_2}(f_2) \imp (f_1f_2 \in \pp) \] \[\iff \forall (f_1,f_2:R). f_1 \in S_1 \imp f_2 \in S_2 \imp (f_1f_2 \in \pp) \] \[\iff S_1 S_2 \subseteq \pp \] And now let's compute the interpretation of $(\ups P_1) \amp (\ups P_2)$: \[\sem{(\ups P_1) \amp (\ups P_2)}(\pp) \iff \sem{\ups P_1}(\pp) \lor \sem{\ups P_2}(\pp) \] \[\iff (\forall (f_1:R). \sem{ P_1}(f_1) \imp f_1 \in \pp) \lor (\forall (f_2:R). \sem{ P_2}(f_2) \imp f_2 \in \pp) \] \[\iff (\forall (f_1:R). f_1 \in S_1 \imp f_1 \in \pp) \lor (\forall (f_2:R). f_2 \in S_2 \imp f_2 \in \pp) \] \[\iff (S_1 \subseteq \pp) \lor (S_2 \subseteq \pp)\] But we can in fact show
Lemma:
\[ S_1 S_2 \subseteq \pp \iff (S_1 \subseteq \pp) \lor (S_2 \subseteq \pp)\]
Proof:
$\Leftarrow$: Suppose wlog that $S_1 \subseteq\pp$. Then since $\pp$ is an ideal, $S_1 S_2 \subseteq \pp$.
$\imp$: Suppose towards a contradiction that not $(S_1 \subseteq \pp) \lor (S_2 \subseteq \pp)$.
This means we have $s_1\in S_1 \setminus\pp , s_2\in S_2\setminus \pp$. But then $s_1 s_2 \in S_1S_2$,
and since $\pp$ is a prime ideal, we also know $s_1 s_2 \not\in \pp$. This contradicts the assumption $S_1S_2\subseteq \pp$.
$\cqed$
Therefore $\otimes$ and $\amp$ coincide in the semantics, at least up to appropriately inserted $\ups$-shifts.