Where to go from here? We could try doing calculus to it. With the reparameterization, adjacent discrete values of $N/2 + tN^p$ which actually differ by 1 will differ in their $t$-value by $1/N^p$, so let's set $\Delta t = 1/N^p$. Maybe we could analyze the derivative of $f$. \[ f'(t) = \lim_{\Delta t \to 0} {f(t + \Delta t) - f(t)\over \Delta t}\] \[ = \lim_{\Delta t \to 0} \left(1\over \Delta t\right)\left( { N \choose N/2 + (t + \Delta t)N^p} - { N \choose N/2 + tN^p}\right)\] \[ = \lim_{\Delta t \to 0} \left(1\over \Delta t\right)\left( { N \choose N/2 + t N^p + 1} - { N \choose N/2 + tN^p}\right)\] Gross. That doesn't look like it's heading anywhere useful. Subtracting one binomial coefficient from the adjacent one will be a mess. But dividing one by another might be more promising. Because in general \[{a\choose b+1}{a\choose b}^{-1} = {a!\over (b+1)!(a-b-1)!}\left(a!\over b!(a-b)!\right)^{-1} \] \[= { a!\over (b+1)!(a-b-1)!}{b!(a-b)! \over a!}\] \[= {b!(a-b)!\over (b+1)!(a-b-1)!}\] \[= {a-b \over b+1}\]
So let's try taking the derivative of the logarithm of $f$. \[ (\ln f(t))' = \lim_{\Delta t \to 0} {\ln f(t + \Delta t) - \ln f(t)\over \Delta t}\] \[ = \lim_{\Delta t \to 0}\left(1\over\Delta t\right) \ln { f(t + \Delta t) \over f(t)}\] \[ = \lim_{\Delta t \to 0}\left(1\over\Delta t\right) \ln { { N \choose N/2 + t N^p + 1} \over { N \choose N/2 + t N^p }}\] \[ = \lim_{\Delta t \to 0}\left(1\over\Delta t\right) \ln { N/2 - t N^p \over N/2 + t N^p + 1}\] \[ \approx \lim_{\Delta t \to 0}\left(1\over\Delta t\right) \ln { N/2 - t N^p \over N/2 + t N^p }\] \[ = \lim_{\Delta t \to 0} N^p \ln { N/2 - t N^p \over N/2 + t N^p }\] \[ = \lim_{\Delta t \to 0} N^p \ln { 1 - 2t N^{p-1} \over 1 + 2t N^{p-1} }\] \[ = \lim_{\Delta t \to 0} N^p \ln \left(1- 2{ 2tN^{p-1} \over 1 + 2t N^{p-1} }\right)\] \[ = \lim_{\Delta t \to 0} N^p \ln \left(1- 2{ 1 \over 1 + (2t)^{-1} N^{1-p} }\right)\] \[ \approx \lim_{\Delta t \to 0} N^p \ln \left(1- 2{ 1 \over (2t)^{-1} N^{1-p} }\right)\] \[ = \lim_{\Delta t \to 0} N^p \ln \left(1- { 4t \over N^{1-p} }\right)\] \[ = \lim_{\Delta t \to 0} \ln \left(\left(1- { 4t \over N^{1-p} }\right)^{N^p}\right)\] Now we stare at that final expression and remember that \[ \lim_{n \to \infty} \left(1-{x\over n} \right)^{n} = e^x\] So we'd have \[ \lim_{N \to \infty} \left(1- { 4t \over N^{1-p} }\right)^{N^p} = e^{-4t}\] if only we knew $N^p = N^{1-p}$. This is the moment in the story that tells us what $p$ is: the right choice is $p=1/2$, which solves $p = 1-p$. Then we have \[ (\ln f(t))' = \lim_{\Delta t \to 0} \ln \left(\left(1- { 4t \over \sqrt{N} }\right)^{\sqrt{N}}\right)\] \[ = \lim_{N \to \infty} \ln \left(\left(1- { 4t \over \sqrt{N} }\right)^{\sqrt{N}}\right)\] \[ = \ln \left(e^{-4t}\right)\] \[ = -4t \] \[ \int (\ln f(t))' dt = \int -4t\,dt \] \[ \ln f(t) = -2t^2 + \ln C\] \[ f(t) = Ce^{-2t^2}\] At the end of the day, we're claiming that there exists a constant $C$ such that for any $t$, \[\lim_{N\to \infty} {N \choose N/2 + t\sqrt N} \approx C e^{-2t^2}\]
(log(binomial(10000,5000) / binomial(10000,5100))).n()into Sage, I get
1.99993332799924as expected. Similarly, setting $t = 3,5$ gives me \[ {10,000 \choose 5,300} {10,000 \choose 5,500}^{-1} \approx {Ce^{-2 \cdot 3^2} \over Ce^{-2 \cdot 5^2} } \] \[ = e^{2\cdot(25-9)} = e^{32}\] and
(log(binomial(10000,5300) / binomial(10000,5500))).n()gives
32.0696311776450as expected.
Is there any way to describe a function from \[ {100 \choose 50} \to {100 \choose 70} \] that is "approximately $e^8$ to one"?