Documentation

Mathlib.Topology.EMetricSpace.Diam

Diameters of sets in extended metric spaces #

In this file we define the diameter of a set in the extended metric space as an extended nonnegative real number.

noncomputable def Metric.ediam {X : Type u_2} [PseudoEMetricSpace X] (s : Set X) :

The diameter of a set in a pseudoemetric space as an extended nonnegative real number.

Equations
Instances For
    theorem Metric.ediam_le_iff {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} :
    ediam s d xs, ys, edist x y d
    theorem Metric.ediam_image_le_iff {α : Type u_1} {X : Type u_2} [PseudoEMetricSpace X] {d : ENNReal} {f : αX} {s : Set α} :
    ediam (f '' s) d xs, ys, edist (f x) (f y) d
    theorem Metric.edist_le_of_ediam_le {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] {d : ENNReal} (hx : x s) (hy : y s) (hd : ediam s d) :
    edist x y d
    theorem Metric.edist_le_ediam_of_mem {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] (hx : x s) (hy : y s) :

    If two points belong to some set, their edistance is bounded by the diameter of the set

    theorem Metric.ediam_le {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} (h : xs, ys, edist x y d) :

    If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter.

    theorem Metric.ediam_subsingleton {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :
    ediam s = 0

    The diameter of a subsingleton vanishes.

    theorem Set.Subsingleton.ediam_eq {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :

    Alias of Metric.ediam_subsingleton.


    The diameter of a subsingleton vanishes.

    @[simp]

    The diameter of the empty set vanishes

    @[simp]
    theorem Metric.ediam_singleton {X : Type u_2} {x : X} [PseudoEMetricSpace X] :

    The extended diameter of a singleton vanishes

    @[simp]
    theorem Metric.ediam_one {X : Type u_2} [PseudoEMetricSpace X] [One X] :
    ediam 1 = 0
    @[simp]
    theorem Metric.ediam_zero {X : Type u_2} [PseudoEMetricSpace X] [Zero X] :
    ediam 0 = 0
    theorem Metric.ediam_iUnion_mem_option {X : Type u_2} [PseudoEMetricSpace X] {ι : Type u_3} (o : Option ι) (s : ιSet X) :
    ediam (⋃ io, s i) = io, ediam (s i)
    theorem Metric.ediam_insert {X : Type u_2} {s : Set X} {x : X} [PseudoEMetricSpace X] :
    ediam (insert x s) = max (⨆ ys, edist x y) (ediam s)
    theorem Metric.ediam_pair {X : Type u_2} {x y : X} [PseudoEMetricSpace X] :
    ediam {x, y} = edist x y
    theorem Metric.ediam_triple {X : Type u_2} {x y z : X} [PseudoEMetricSpace X] :
    ediam {x, y, z} = max (max (edist x y) (edist x z)) (edist y z)
    theorem Metric.ediam_mono {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : s t) :

    The extended diameter is monotonous with respect to inclusion

    theorem Metric.ediam_union_le_add_edist {X : Type u_2} {s t : Set X} {x y : X} [PseudoEMetricSpace X] (xs : x s) (yt : y t) :
    ediam (s t) ediam s + edist x y + ediam t

    The extended diameter of a union is controlled by the diameter of the sets, and the edistance between two points in the sets.

    theorem Metric.ediam_union_le {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : (s t).Nonempty) :
    ediam (s t) ediam s + ediam t

    If two sets have nonempty intersection, then the extended diameter of their union is estimated from above by the sum of their union.

    theorem Metric.ediam_eball_le {X : Type u_2} {x : X} [PseudoEMetricSpace X] {r : ENNReal} :
    theorem Metric.ediam_pi_le_of_le {ι : Type u_3} {X : ιType u_4} [Fintype ι] [(i : ι) → PseudoEMetricSpace (X i)] {s : (i : ι) → Set (X i)} {c : ENNReal} (h : ∀ (b : ι), ediam (s b) c) :
    theorem Metric.ediam_pos_iff {X : Type u_2} {s : Set X} [EMetricSpace X] :
    theorem Metric.ediam_pos_iff' {X : Type u_2} {s : Set X} [EMetricSpace X] :
    0 < ediam s xs, ys, x y
    @[deprecated Metric.ediam (since := "2026-01-04")]
    def EMetric.diam {X : Type u_2} [PseudoEMetricSpace X] (s : Set X) :

    Alias of Metric.ediam.


    The diameter of a set in a pseudoemetric space as an extended nonnegative real number.

    Equations
    Instances For
      @[deprecated Metric.ediam_eq_sSup (since := "2026-01-04")]

      Alias of Metric.ediam_eq_sSup.

      @[deprecated Metric.ediam_le_iff (since := "2026-01-04")]
      theorem EMetric.diam_le_iff {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} :
      Metric.ediam s d xs, ys, edist x y d

      Alias of Metric.ediam_le_iff.

      @[deprecated Metric.ediam_image_le_iff (since := "2026-01-04")]
      theorem EMetric.diam_image_le_iff {α : Type u_1} {X : Type u_2} [PseudoEMetricSpace X] {d : ENNReal} {f : αX} {s : Set α} :
      Metric.ediam (f '' s) d xs, ys, edist (f x) (f y) d

      Alias of Metric.ediam_image_le_iff.

      @[deprecated Metric.edist_le_of_ediam_le (since := "2026-01-04")]
      theorem EMetric.edist_le_of_diam_le {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] {d : ENNReal} (hx : x s) (hy : y s) (hd : Metric.ediam s d) :
      edist x y d

      Alias of Metric.edist_le_of_ediam_le.

      @[deprecated Metric.edist_le_ediam_of_mem (since := "2026-01-04")]
      theorem EMetric.edist_le_diam_of_mem {X : Type u_2} {s : Set X} {x y : X} [PseudoEMetricSpace X] (hx : x s) (hy : y s) :

      Alias of Metric.edist_le_ediam_of_mem.


      If two points belong to some set, their edistance is bounded by the diameter of the set

      @[deprecated Metric.ediam_le (since := "2026-01-04")]
      theorem EMetric.diam_le {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] {d : ENNReal} (h : xs, ys, edist x y d) :

      Alias of Metric.ediam_le.


      If the distance between any two points in a set is bounded by some constant, this constant bounds the diameter.

      @[deprecated Metric.ediam_subsingleton (since := "2026-01-04")]
      theorem EMetric.diam_subsingleton {X : Type u_2} {s : Set X} [PseudoEMetricSpace X] (hs : s.Subsingleton) :

      Alias of Metric.ediam_subsingleton.


      The diameter of a subsingleton vanishes.

      @[deprecated Metric.ediam_empty (since := "2026-01-04")]

      Alias of Metric.ediam_empty.


      The diameter of the empty set vanishes

      @[deprecated Metric.ediam_singleton (since := "2026-01-04")]

      Alias of Metric.ediam_singleton.


      The extended diameter of a singleton vanishes

      @[deprecated Metric.ediam_zero (since := "2026-01-04")]

      Alias of Metric.ediam_zero.

      @[deprecated Metric.ediam_one (since := "2026-01-04")]
      theorem EMetric.diam_one {X : Type u_2} [PseudoEMetricSpace X] [One X] :

      Alias of Metric.ediam_one.

      @[deprecated Metric.ediam_iUnion_mem_option (since := "2026-01-04")]
      theorem EMetric.diam_iUnion_mem_option {X : Type u_2} [PseudoEMetricSpace X] {ι : Type u_3} (o : Option ι) (s : ιSet X) :
      Metric.ediam (⋃ io, s i) = io, Metric.ediam (s i)

      Alias of Metric.ediam_iUnion_mem_option.

      @[deprecated Metric.ediam_insert (since := "2026-01-04")]
      theorem EMetric.diam_insert {X : Type u_2} {s : Set X} {x : X} [PseudoEMetricSpace X] :
      Metric.ediam (insert x s) = max (⨆ ys, edist x y) (Metric.ediam s)

      Alias of Metric.ediam_insert.

      @[deprecated Metric.ediam_pair (since := "2026-01-04")]
      theorem EMetric.diam_pair {X : Type u_2} {x y : X} [PseudoEMetricSpace X] :

      Alias of Metric.ediam_pair.

      @[deprecated Metric.ediam_triple (since := "2026-01-04")]
      theorem EMetric.diam_triple {X : Type u_2} {x y z : X} [PseudoEMetricSpace X] :
      Metric.ediam {x, y, z} = max (max (edist x y) (edist x z)) (edist y z)

      Alias of Metric.ediam_triple.

      @[deprecated Metric.ediam_mono (since := "2026-01-04")]
      theorem EMetric.diam_mono {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : s t) :

      Alias of Metric.ediam_mono.


      The extended diameter is monotonous with respect to inclusion

      @[deprecated Metric.ediam_union_le_add_edist (since := "2026-01-04")]
      theorem EMetric.diam_union {X : Type u_2} {s t : Set X} {x y : X} [PseudoEMetricSpace X] (xs : x s) (yt : y t) :

      Alias of Metric.ediam_union_le_add_edist.


      The extended diameter of a union is controlled by the diameter of the sets, and the edistance between two points in the sets.

      @[deprecated Metric.ediam_union_le (since := "2026-01-04")]
      theorem EMetric.diam_union' {X : Type u_2} {s t : Set X} [PseudoEMetricSpace X] (h : (s t).Nonempty) :

      Alias of Metric.ediam_union_le.


      If two sets have nonempty intersection, then the extended diameter of their union is estimated from above by the sum of their union.

      @[deprecated Metric.ediam_closedEBall_le (since := "2026-01-04")]
      theorem EMetric.diam_closedBall {X : Type u_2} {x : X} [PseudoEMetricSpace X] {r : ENNReal} :

      Alias of Metric.ediam_closedEBall_le.

      @[deprecated Metric.ediam_eball_le (since := "2026-01-04")]
      theorem EMetric.diam_ball {X : Type u_2} {x : X} [PseudoEMetricSpace X] {r : ENNReal} :

      Alias of Metric.ediam_eball_le.

      @[deprecated Metric.ediam_pi_le_of_le (since := "2026-01-04")]
      theorem EMetric.diam_pi_le_of_le {ι : Type u_3} {X : ιType u_4} [Fintype ι] [(i : ι) → PseudoEMetricSpace (X i)] {s : (i : ι) → Set (X i)} {c : ENNReal} (h : ∀ (b : ι), Metric.ediam (s b) c) :

      Alias of Metric.ediam_pi_le_of_le.

      @[deprecated Metric.ediam_eq_zero_iff (since := "2026-01-04")]

      Alias of Metric.ediam_eq_zero_iff.

      @[deprecated Metric.ediam_pos_iff (since := "2026-01-04")]
      theorem EMetric.diam_pos_iff {X : Type u_2} {s : Set X} [EMetricSpace X] :

      Alias of Metric.ediam_pos_iff.

      @[deprecated Metric.ediam_pos_iff' (since := "2026-01-04")]
      theorem EMetric.diam_pos_iff' {X : Type u_2} {s : Set X} [EMetricSpace X] :
      0 < Metric.ediam s xs, ys, x y

      Alias of Metric.ediam_pos_iff'.