Documentation
Noperthedron
.
Bounding
.
BoundingUtil
Search
return to top
source
Imports
Init
Noperthedron.Basic
Noperthedron.Bounding.Lemma11
Noperthedron.Bounding.OpNorm
Noperthedron.Bounding.RaRa
Imported by
Bounding
.
dist_rot3_apply
Bounding
.
dist_rot3
Bounding
.
dist_rot2_apply
Bounding
.
dist_rot2
Bounding
.
dist_rot3_eq_dist_rot
Bounding
.
two_mul_abs_sin_half_le
Bounding
.
dist_rot2_le_dist
Bounding
.
rot3_eq_rot3_mat_toEuclideanLin
Material for [SY25] Lemma 12.
source
theorem
Bounding
.
dist_rot3_apply
{
d
:
Fin
3
}
{
α
α'
:
ℝ
}
{
v
:
Euc(
3
)
}
:
‖
(
(
rot3
d
)
α
-
(
rot3
d
)
α'
)
v
‖
=
2
*
|
Real.sin
((
α
-
α'
)
/
2
)
|
*
‖
WithLp.toLp
2
(
d
.
removeNth
v
.
ofLp
)
‖
source
theorem
Bounding
.
dist_rot3
{
d
:
Fin
3
}
{
α
α'
:
ℝ
}
:
‖
(
rot3
d
)
α
-
(
rot3
d
)
α'
‖
=
2
*
|
Real.sin
((
α
-
α'
)
/
2
)
|
source
theorem
Bounding
.
dist_rot2_apply
{
α
α'
:
ℝ
}
{
v
:
Euc(
2
)
}
:
‖
(
rot2
α
-
rot2
α'
)
v
‖
=
2
*
|
Real.sin
((
α
-
α'
)
/
2
)
|
*
‖
v
‖
source
theorem
Bounding
.
dist_rot2
{
α
α'
:
ℝ
}
:
‖
rot2
α
-
rot2
α'
‖
=
2
*
|
Real.sin
((
α
-
α'
)
/
2
)
|
source
theorem
Bounding
.
dist_rot3_eq_dist_rot
{
d
:
Fin
3
}
{
α
α'
:
ℝ
}
:
‖
(
rot3
d
)
α
-
(
rot3
d
)
α'
‖
=
‖
rot2
α
-
rot2
α'
‖
source
theorem
Bounding
.
two_mul_abs_sin_half_le
{
α
:
ℝ
}
:
2
*
|
Real.sin
(
α
/
2
)
|
≤
|
α
|
source
theorem
Bounding
.
dist_rot2_le_dist
{
α
α'
:
ℝ
}
:
‖
rot2
α
-
rot2
α'
‖
≤
‖
α
-
α'
‖
source
def
Bounding
.
rot3_eq_rot3_mat_toEuclideanLin
{
d
:
Fin
3
}
{
θ
:
ℝ
}
:
↑
(
(
rot3
d
)
θ
)
=
Matrix.toEuclideanLin
(
rot3_mat
d
θ
)
Equations
⋯
=
⋯
Instances For