Equations
- instPoseLikePose = { inner := fun (vp : Pose) => (↑(rotRM vp.θ₁ vp.φ₁ vp.α)).toAffineMap, outer := fun (vp : Pose) => (↑(rotRM vp.θ₂ vp.φ₂ 0)).toAffineMap }
theorem
Pose.is_rupert_imp_inner_in_outer
(p : Pose)
(poly : Finset ℝ³)
(h_rupert : RupertPose p ((convexHull ℝ) ↑poly))
(v : ℝ³)
(hv : v ∈ poly)
:
If we have a convex polyhedron with p being a pose witness of the rupert property, then in particular every vertex in the "inner" transformation lies in the convex hull of the vertices under the "outer" transformation.