Documentation

Noperthedron.Pose

structure Pose :
Instances For
    noncomputable instance instPoseLikePose :
    Equations
    noncomputable def Pose.rotM₁ (p : Pose) :
    Equations
    Instances For
      noncomputable def Pose.rotM₂ (p : Pose) :
      Equations
      Instances For
        noncomputable def Pose.rotR (p : Pose) :
        Equations
        Instances For
          noncomputable def Pose.vecX₁ (p : Pose) :
          Equations
          Instances For
            noncomputable def Pose.vecX₂ (p : Pose) :
            Equations
            Instances For
              noncomputable def Pose.rotM₁θ (p : Pose) :
              Equations
              Instances For
                noncomputable def Pose.rotM₂θ (p : Pose) :
                Equations
                Instances For
                  noncomputable def Pose.rotM₁φ (p : Pose) :
                  Equations
                  Instances For
                    noncomputable def Pose.rotM₂φ (p : Pose) :
                    Equations
                    Instances For
                      noncomputable def Pose.rotR' (p : Pose) :
                      Equations
                      Instances For
                        noncomputable def Pose.inner (p : Pose) :
                        Equations
                        Instances For
                          noncomputable def Pose.outer (p : Pose) :
                          Equations
                          Instances For
                            inductive Pose.equiv (p1 p2 : Pose) :
                            Instances For
                              Equations
                              Instances For
                                Equations
                                Instances For
                                  theorem Pose.proj_rm_eq_m (θ φ : ) (v : Euc(3)) :
                                  proj_xyL ((rotRM θ φ 0) v) = (rotM θ φ) v
                                  theorem Pose.is_rupert_imp_inner_in_outer (p : Pose) (poly : Finset Euc(3)) (h_rupert : RupertPose p ((convexHull ) poly)) (v : Euc(3)) (hv : v poly) :
                                  p.inner v (convexHull ) (p.outer '' poly)

                                  If we have a convex polyhedron with p being a pose witness of the rupert property, then in particular every vertex in the "inner" transformation lies in the convex hull of the vertices under the "outer" transformation.

                                  theorem Pose.inner_eq_RM (p : Pose) :
                                  p.inner = p.rotR p.rotM₁
                                  theorem Pose.outer_eq_M (p : Pose) :
                                  p.outer = p.rotM₂
                                  theorem Pose.equiv_rupert_imp_rupert {p1 p2 : Pose} {S : Set Euc(3)} (e : p1.equiv p2) (r : RupertPose p1 S) :
                                  theorem Pose.matrix_rm_eq_imp_pose_equiv {p q : Pose} (rme : p.rotR p.rotM₁ = q.rotR q.rotM₁) (rm2 : p.rotM₂ = q.rotM₂) :
                                  p.equiv q
                                  theorem Pose.matrix_rm_eq_neg_imp_pose_equiv {p q : Pose} (rme : p.rotR p.rotM₁ = -q.rotR q.rotM₁) (rm2 : p.rotM₂ = -q.rotM₂) :
                                  p.equiv q
                                  theorem Pose.matrix_eq_imp_pose_equiv {p q : Pose} (re : p.rotR = q.rotR) (rm1 : p.rotM₁ = q.rotM₁) (rm2 : p.rotM₂ = q.rotM₂) :
                                  p.equiv q
                                  theorem Pose.matrix_neg_imp_pose_equiv {p q : Pose} (re : p.rotR = -q.rotR) (rm1 : p.rotM₁ = q.rotM₁) (rm2 : p.rotM₂ = -q.rotM₂) :
                                  p.equiv q