Equations
- instPoseLikePose = { inner := fun (vp : Pose) => (↑(rotRM vp.θ₁ vp.φ₁ vp.α)).toAffineMap, outer := fun (vp : Pose) => (↑(rotRM vp.θ₂ vp.φ₂ 0)).toAffineMap }
- on_the_nose {α : Type} [PoseLike α] {p1 p2 : α} : innerShadow p1 = innerShadow p2 ∧ outerShadow p1 = outerShadow p2 → equiv p1 p2
- off_by_neg {α : Type} [PoseLike α] {p1 p2 : α} : innerShadow p1 = -innerShadow p2 ∧ outerShadow p1 = -outerShadow p2 → equiv p1 p2
Instances For
theorem
Pose.is_rupert_imp_inner_in_outer
(p : Pose)
(poly : Finset Euc(3))
(h_rupert : RupertPose p ((convexHull ℝ) ↑poly))
(v : Euc(3))
(hv : v ∈ poly)
:
If we have a convex polyhedron with p being a pose witness of the rupert property, then in particular every vertex in the "inner" transformation lies in the convex hull of the vertices under the "outer" transformation.
theorem
Pose.equiv_rupert_imp_rupert
{P : Type}
[PoseLike P]
{p1 p2 : P}
{S : Set Euc(3)}
(e : equiv p1 p2)
(r : RupertPose p1 S)
:
RupertPose p2 S