- Boxes
- definitions
- Ellipses
- theorems and lemmas
- Blue border
- the statement of this result is ready to be formalized; all prerequisites are done
- Orange border
- the statement of this result is not ready to be formalized; the blueprint needs more work
- Blue background
- the proof of this result is ready to be formalized; all prerequisites are done
- Green border
- the statement of this result is formalized
- Green background
- the proof of this result is formalized
- Dark green background
- the proof of this result and all its ancestors are formalized
- Dark green border
- this is in Mathlib
\(\| C_1 \| = 1\), \({98 \over 100} {\lt} \| C_2 \| {\lt} {99 \over 100}\), and \({98 \over 100} {\lt} \| C_3 \| {\lt} {99 \over 100}\).
If the noperthedron is Rupert, then there exists a solution with
Let \(\alpha ,\theta ,\varphi \in [-4,4]\). Then it holds that
Moreover,
Let \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\) and \(M_{\operatorname{\mathbb {Q}}} :=M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Three points \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) with \(\| \widetilde{P}_1\| , \| \widetilde{P}_2\| , \| \widetilde{P}_3\| \leq 1+\kappa \) are called \(\varepsilon \)-\(\kappa \)-spanning for \((\theta , \varphi )\) if it holds that:
Let \(\theta , \varphi \in \mathbb {R}\), \(\varepsilon {\gt} 0\), and set \(M := M(\theta , \varphi )\). Three points \(P_1, P_2, P_3 \in \mathbb {R}^3\) with \(\| P_1\| , \| P_2\| , \| P_3\| \leq 1\) are called \(\varepsilon \)-spanning for \((\theta , \varphi )\) if it holds that:
Let \(\operatorname{\mathcal{P}}\subset \operatorname{\mathbb {R}}^2\) be a convex polygon and \(Q \in \operatorname{\mathcal{P}}\) one of its vertices. Assume that for some \(\overline{Q} \in \operatorname{\mathbb {R}}^2\) it holds that \(Q \in \operatorname{\mathrm{Disc}}_{\delta }(\overline{Q})\), i.e. \(\| Q - \overline{Q}\| {\lt} \delta \). Define \(\operatorname{\mathrm{Sect}}_\delta (\overline{Q}) :=\operatorname{\mathrm{Disc}}_{\delta }(\overline{Q}) \cap \operatorname{\mathcal{P}}^\circ \) as the intersection between \(\operatorname{\mathrm{Disc}}_{\delta }(\overline{Q})\) and the interior of the convex hull of \(\operatorname{\mathcal{P}}\).
Moreover, \(Q \in \operatorname{\mathcal{P}}\) is called \(\delta \)-locally maximally distant with respect to \(\overline{Q}\) (\(\delta \)-LMD\((\overline{Q})\)) if for all \(A \in \operatorname{\mathrm{Sect}}_\delta (\overline{Q})\) it holds that \(\| Q\| {\gt} \| A\| \).
The Noperthedron is polyhedron given by the vertex set that is the pointsymmetrization of
Given \(v_1, \dots , v_n \in \operatorname{\mathbb {R}}^n\) write \(\mathrm{span}^+(v_1,\dots ,v_n)\) for the set (simplicial cone) in \(\operatorname{\mathbb {R}}^n\) defined by
which is the natural restriction of \(\mathrm{span}(v_1,\dots ,v_n)\) to positive weights.
We define the two functions \(\sin _{\mathbb {Q}}, \cos _{\mathbb {Q}}: \operatorname{\mathbb {R}}\to \operatorname{\mathbb {R}}\) by:
Further, by replacing \(\sin ,\cos \) with \(\sin _{\mathbb {Q}},\cos _{\mathbb {Q}}\) we define the functions
In the setting of lemma 53 let additionally \(\overline{\theta }, \overline{\varphi }\in \operatorname{\mathbb {R}}\cap [-4,4]\) and set \(\overline{M} = M(\overline{\theta }, \overline{\varphi })\), \(\overline{M}_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\overline{\theta }, \overline{\varphi })\). Then
For \(1 \leq i \leq n\) let \((A_i,B_i)\) be pairs of real matrices, such that for each \(i\) the dimensions of \(A_i\) and \(B_i\) are equal. Assume moreover that the products \(A_1\cdots A_n\) and \(B_1 \cdots B_n\) are well defined. Finally, assume that \(\| A_i-B_i\| \leq \kappa \) and let \(\delta _i\geq \max (\| A_i\| ,\| B_i\| ,1)\). Then it holds that \(\| A_1\cdots A_n-B_1\cdots B_n\| \leq n\kappa \cdot \delta _1\cdots \delta _n\).
Let \(\alpha , \theta , \varphi \in [-4,4]\), \(P\in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\) and let \(\widetilde{P}\) be a \(\kappa \)-rational approximation of \(P\). Set \(M = M(\theta , \varphi )\) and \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\theta = M^\theta (\theta , \varphi )\), \(M^\theta _{\operatorname{\mathbb {Q}}} = M^\theta _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\varphi = M^\varphi (\theta , \varphi )\), \(M^\varphi _{\operatorname{\mathbb {Q}}} = M^\varphi _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(R = R(\alpha )\), \(R_{\operatorname{\mathbb {Q}}} = R_{\operatorname{\mathbb {Q}}}(\alpha )\), \(R' = R'(\alpha )\), \(R'_{\operatorname{\mathbb {Q}}} = R'_{\operatorname{\mathbb {Q}}}(\alpha )\). Finally let \(w \in \operatorname{\mathbb {R}}^2\) with \(\| w\| = 1\). Then:
Let \(P,Q \in \operatorname{\mathbb {R}}^3\) with \(\| P\| ,\| Q\| \leq 1\) and \(\widetilde{P},\widetilde{Q}\) some respective \(\kappa \)-rational approximations. Moreover, let \(\alpha , \theta , \varphi \in \operatorname{\mathbb {R}}\in [-4,4]\) and set \(X = X(\theta , \varphi )\), \(X_{\operatorname{\mathbb {Q}}} = X_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(M = M(\theta , \varphi )\), \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Then
In the setting of lemma 53, let \(\sqrt[+]{x}\) be an upper-\(\operatorname{\mathbb {Q}}\)-square-root function and set \(\| x\| _{+} :=\sqrt[+]{\| x\| ^2}\). Set
as well as
Then it holds that \(A \geq A_{\operatorname{\mathbb {Q}}}\).
Let \(\varepsilon {\gt}0\) and \(\theta ,\overline{\theta }, \varphi , \overline{\varphi }\in \operatorname{\mathbb {R}}\) with \(|\theta - \overline{\theta }|, |\varphi - \overline{\varphi }| \leq \varepsilon \). Define \(M = M(\theta , \varphi )\) and \(\overline{M} = M(\overline{\theta }, \overline{\varphi })\) and let \(P, Q \in \operatorname{\mathbb {R}}^3\) with \(\| P\| , \| Q\| \leq 1\). Then:
Let \(A(x,y)\) be an \(m\times n\) matrix with \(1 \leq m,n\leq 3\) such that every entry is in \([-1,1]\).of the form \(a_1(x)\cdot a_2(y)\) where \(a_i(z) \in [-1,1]\). Define \(A_{\mathbb {Q}}(x,y)\) by replacing \(\sin \) with \(\sin _{\mathbb {Q}}\) and \(\cos \) with \(\cos _{\mathbb {Q}}\). Then for every \(x,y\in [-4,4]\) it holds that \(\| A(x,y)-A_{\mathbb {Q}}(x,y)\| \leq \kappa \).
Let \(P_1, P_2, P_3 \in \operatorname{\mathbb {R}}^3\) with \(\| P_i\| \leq 1\) and \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) be their \(\kappa \)-rational approximations. Assume that \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for some \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\), then \(P_1, P_2, P_3\) are \(\varepsilon \)-spanning for \(\theta , \varphi \).
Let \(P_1, P_2, P_3 \in \operatorname{\mathbb {R}}^3\) with \(\| P_1\| ,\| P_2\| ,\| P_3\| \leq 1\) be \(\varepsilon \)-spanning for \((\overline{\theta }, \overline{\varphi })\) and let \(\theta , \varphi \in \operatorname{\mathbb {R}}\) such that \(|\theta - \overline{\theta }|, |\varphi - \overline{\varphi }| \leq \varepsilon \). Assume that \(\langle X(\theta , \varphi ), P_i \rangle {\gt} 0\) for \(i=1,2,3\). Then
Suppose \(V = V_1, \ldots , V_m \subseteq \operatorname{\mathbb {R}}^n\) be a finite sequence of points. Suppose \(\mathsf{Co}(V)\) is its convex hull. Let \(S \in \mathsf{Co}(V)\) and \(w \in \operatorname{\mathbb {R}}^n\) be given. then
Let \(P, Q \in \operatorname{\mathbb {R}}^3\) with \(\| P\| , \| Q\| \leq 1\). Let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {R}}\), then set
and \(\delta \geq \| T - M(\overline{\theta }_2, \overline{\varphi }_2) Q\| \). Finally, let \(\theta _1, \varphi _1, \theta _2, \varphi _2, \alpha \in \operatorname{\mathbb {R}}\) with \(|\overline{\theta }_1-\theta _1|, |\overline{\varphi }_1 - \varphi _1|, |\overline{\theta }_2-\theta _2|, |\overline{\varphi }_2-\varphi _2|, |\overline{\alpha }- \alpha | \leq \varepsilon \). Then \(R(\alpha )M(\theta _1, \varphi _1) P, M(\theta _2, \varphi _2) Q \in \operatorname{\mathrm{Disc}}_{\delta + \sqrt{5} \varepsilon }(T)\).
For every \(x\in [-4,4]\) it holds that
Let \(V_1,V_2,V_3,Y,Z \in \operatorname{\mathbb {R}}^3\) with \(\| Y \| =\| Z \| \) and \(Y,Z \in \mathrm{span}^+(V_1,V_2,V_3)\). Then at least one of the following inequalities does not hold:
Let \(S \in \operatorname{\mathbb {R}}^3\) and \(w \in \operatorname{\mathbb {R}}^2\) be unit vectors and set \(f(x_1,x_2,x_3) = \langle R(x_3) M(x_1,x_2)S,w \rangle \). Then for all \(x_1,x_2,x_3 \in \operatorname{\mathbb {R}}\) and any \(i,j \in \{ 1,2,3\} \) it holds that
Let \(\operatorname{\mathcal{P}}\) be a convex polygon and \(Q \in \operatorname{\mathcal{P}}\) be one of its vertices. Let \(\overline{Q} \in \operatorname{\mathbb {R}}^2\) with \(\| Q - \overline{Q}\| {\lt} \delta \) for some \(\delta {\gt}0\). Assume that for some \(r {\gt} 0 \) such that \(\| Q\| {\gt} r\) it holds that
for all other vertices \(P_j \in \operatorname{\mathcal{P}}\setminus Q\). Then \(Q \in \operatorname{\mathcal{P}}\) is \(\delta \)-locally maximally distant with respect to \(\overline{Q}\).
Let \(P \in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\). Further, let \(\varepsilon , r{\gt}0\) and \(\overline{\theta },\overline{\varphi }, \theta , \varphi \in \operatorname{\mathbb {R}}\) such that \(|\overline{\theta }-\theta |, |\overline{\varphi }- \varphi | \leq \varepsilon \). If \( \| M(\overline{\theta },\overline{\varphi }) P \| {\gt} r + \sqrt{2}\varepsilon \) then \( \| M(\theta ,\varphi ) P \| {\gt} r. \)
Let \(f:\operatorname{\mathbb {R}}^n\to \operatorname{\mathbb {R}}\) be a \(C^2\)-function and \(x_1,\dots ,x_n,y_1,\dots ,y_n \in \operatorname{\mathbb {R}}\) such that \(|x_1-y_1|,\dots ,|x_n-y_n|\leq \varepsilon \). If \( \left|\partial _{x_i}\partial _{x_j}f(x_1,\dots ,x_n)\right| \leq 1 \) for all \(i,j \in \{ 1,\dots ,n\} \) then
Let \(\varepsilon {\gt}0\), \(|\alpha -\overline{\alpha }|\leq \varepsilon \) and \(a \in \{ x,y,z\} \) then \(\| R_a(\alpha )-R_a({\overline{\alpha }})\| =\| R(\alpha )-R(\overline{\alpha })\| {\lt} \varepsilon \).
For any \(\alpha , \theta ,\varphi \in \operatorname{\mathbb {R}}\) and \(a \in \{ x,y,z\} \) one has \(\| R(\alpha )\| = \| R_a(\alpha )\| =\| M(\theta , \varphi )\| = 1\).
For \(A,\overline{A},B,\overline{B}\in \operatorname{\mathbb {R}}^{n\times n}\) and \(P_1,P_2\in \operatorname{\mathbb {R}}^n\) it holds that
Let \(\varepsilon {\gt}0\) and \(|\theta -\overline{\theta }|,|\varphi -\overline{\varphi }| \leq \varepsilon \) then \(\| M(\theta , \varphi )-M(\overline{\theta },\overline{\varphi })\| , \| X({\theta , \varphi })-X(\overline{\theta },\overline{\varphi })\| {\lt} \sqrt{2}\varepsilon .\)
Let \(\operatorname{\mathbf{P}}= \operatorname{\mathbf{NOP}}\), then for all \(\theta , \varphi , \alpha \in \operatorname{\mathbb {R}}\), the following three identities hold (as sets):
Let \(P \in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\). Further, let \(\varepsilon {\gt}0\) and \(\overline{\theta },\overline{\varphi }, \theta , \varphi \in \operatorname{\mathbb {R}}\) such that \(|\overline{\theta }-\theta |, |\overline{\varphi }- \varphi | \leq \varepsilon \). If \( \langle X(\overline{\theta },\overline{\varphi }),P \rangle {\gt}\sqrt{2}\varepsilon \) then \( \langle X(\theta , \varphi ),P \rangle {\gt}0. \)
There exists a valid solution table with some row that covers
Let \(\operatorname{\mathbf{P}}\) be a pointsymmetric convex polyhedron with radius \(\rho =1\) and let \(S \in \operatorname{\mathbf{P}}\). Further let \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {R}}\) and let \(w\in \operatorname{\mathbb {R}}^2\) be a unit vector. Denote \(\overline{M_1}:=M(\overline{\theta }_1, \overline{\varphi }_1)\), \( \overline{M_2}:=M(\overline{\theta }_2, \overline{\varphi }_2)\) as well as \(\overline{M_1}^{\theta } :=M^\theta (\overline{\theta }_1, \overline{\varphi }_1)\), \(\overline{M_1}^{\varphi } :=M^\varphi (\overline{\theta }_1, \overline{\varphi }_1)\) and analogously for \(\overline{M_2}^{\theta }, \overline{M_2}^{\varphi }\). Finally set
If \(G{\gt}\max _{P\in \operatorname{\mathbf{P}}} H_P\) then there does not exist a solution to Rupert’s condition with
Let \(\operatorname{\mathbf{P}}\) be a pointsymmetric convex polyhedron with radius \(\rho =1\) and \(\widetilde{\operatorname{\mathbf{P}}}\) a \(\kappa \)-rational approximation. Let \(\widetilde{S} \in \widetilde{\operatorname{\mathbf{P}}}\). Further let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Let \(w\in \operatorname{\mathbb {Q}}^2\) be a unit vector. Denote \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1, \overline{\varphi }_1)\), \( \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2, \overline{\varphi }_2)\) as well as \(\overline{M_1}^{\theta } :=M_{\operatorname{\mathbb {Q}}}^\theta (\overline{\theta }_1, \overline{\varphi }_1)\), \(\overline{M_1}^{\varphi } :=M_{\operatorname{\mathbb {Q}}}^\varphi (\overline{\theta }_1, \overline{\varphi }_1)\) and analogously for \(\overline{M_2}^{\theta }, \overline{M_2}^{\varphi }\). Finally set
If \(G^{\operatorname{\mathbb {Q}}}{\gt}\max _{P\in \widetilde{\operatorname{\mathbf{P}}}} H^{\operatorname{\mathbb {Q}}}_P\) then there does not exist a solution to Rupert’s condition to \(\operatorname{\mathbf{P}}\) with
Let \(\operatorname{\mathbf{P}}\) be a polyhedron with radius \(\rho =1\) and \(P_1, P_2, P_3, Q_1, Q_2, Q_3 \in \operatorname{\mathbf{P}}\) be not necessarily distinct. Assume that \(P_1, P_2, P_3\) and \(Q_1, Q_2, Q_3\) are congruent.
Let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {R}}\), then set \(\overline{X_1}:=X(\overline{\theta }_1,\overline{\varphi }_1), \overline{X_2}:=X(\overline{\theta }_2,\overline{\varphi }_2)\) as well as \(\overline{M_1}:=M(\overline{\theta }_1,\overline{\varphi }_1), \overline{M_2}:=M(\overline{\theta }_2,\overline{\varphi }_2)\). Assume that there exist \(\sigma _P, \sigma _Q \in \{ 0,1\} \) such that
for all \(i=1,2,3\). Moreover, assume that \(P_1,P_2,P_3\) are \(\varepsilon \)-spanning for \((\overline{\theta }_1,\overline{\varphi }_1)\) and that \(Q_1,Q_2,Q_3\) are \(\varepsilon \)-spanning for \((\overline{\theta }_2,\overline{\varphi }_2)\). Finally, assume that for all \(i = 1,2,3\) and any \(Q_j \in \operatorname{\mathbf{P}}\setminus Q_i\) it holds that
for some \(r {\gt}0\) such that \(\min _{i=1,2,3}\| \overline{M_2}Q_i \| {\gt} r + \sqrt{2} \varepsilon \) and for some \(\delta \in \operatorname{\mathbb {R}}\) with
Then there exists no solution to Rupert’s problem \(R(\alpha ) M(\theta _1,\varphi _1)\operatorname{\mathbf{P}}\subset M(\theta _2,\varphi _2)\operatorname{\mathbf{P}}^\circ \) with
Let \(\operatorname{\mathbf{P}}\) be a polyhedron with radius \(\rho =1\) and \(\widetilde{P}_i\) be a \(\kappa \)-rational approximation of \(P_i \in \operatorname{\mathbf{P}}\). Set \(\widetilde{\operatorname{\mathbf{P}}} = \{ \widetilde{P}_i \text{ for } P_i \in \operatorname{\mathbf{P}}\} \). Let \(P_1, P_2, P_3, Q_1, Q_2, Q_3 \in \operatorname{\mathbf{P}}\) be not necessarily distinct and assume that \(P_1, P_2, P_3\) and \(Q_1, Q_2, Q_3\) are congruent. Let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Set \(\overline{X_1}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{X_2}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\) as well as \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\). Assume that there exist \(\sigma _P, \sigma _Q \in \{ 0,1\} \) such that
for all \(i=1,2,3\). Moreover, assume that \(\widetilde{P}_1,\widetilde{P}_2,\widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_1,\overline{\varphi }_1)\) and that \(\widetilde{Q}_1,\widetilde{Q}_2,\widetilde{Q}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_2,\overline{\varphi }_2)\). Let \(\sqrt[+]{x}\) and \(\sqrt[-]{x}\) be upper- and lower-\(\operatorname{\mathbb {Q}}\)-square-root functions, then set \(\| Z\| _{+} :=\sqrt[+]{\| Z\| ^2}\) and \(\| Z\| _{-} :=\sqrt[-]{\| Z\| ^2}\) for \(Z \in \operatorname{\mathbb {Q}}^n\). Finally, assume that for all \(i = 1,2,3\) and any \(\widetilde{Q}_j \in \widetilde{\operatorname{\mathbf{P}}} \setminus \widetilde{Q}_i\) it holds that
for some \(r {\gt}0\) such that \(\min _{i=1,2,3}\| \overline{M_2}\widetilde{Q}_i \| _{-} {\gt} r + \sqrt{2} \varepsilon + 3\kappa \) and for some \(\delta \in \operatorname{\mathbb {R}}\) with
Then there exists no solution to Rupert’s problem \(R(\alpha ) M(\theta _1,\varphi _1)\operatorname{\mathbf{P}}\subset M(\theta _2,\varphi _2)\operatorname{\mathbf{P}}^\circ \) with
There does not in fact exist a noperthedron Rupert solution with