3 Bounding Rotations
For any \(\alpha , \theta ,\varphi \in \operatorname{\mathbb {R}}\) and \(a \in \{ x,y,z\} \) one has \(\| R(\alpha )\| = \| R_a(\alpha )\| =\| M(\theta , \varphi )\| = 1\).
See [ SY25 ] , Lemma 9.
Let \(\varepsilon {\gt}0\), \(|\alpha -\overline{\alpha }|\leq \varepsilon \) and \(a \in \{ x,y,z\} \) then \(\| R_a(\alpha )-R_a({\overline{\alpha }})\| =\| R(\alpha )-R(\overline{\alpha })\| {\lt} \varepsilon \).
See [ SY25 ] , Lemma 10.
For all \(a,b \in \operatorname{\mathbb {R}}\) with \(|a|,|b|\leq 2\) the following inequality holds:
with equality only for \(a=0\) or \(b=0\).
Use the Jensen inequality. See [ SY25 ] , Lemma 11.
For any \(\alpha ,\beta \in \mathbb {R}\) one has
with equality only for \(\alpha = \beta = 0\).
See [ SY25 ] , Lemma 12.
Let \(\varepsilon {\gt}0\) and \(|\theta -\overline{\theta }|,|\varphi -\overline{\varphi }| \leq \varepsilon \) then \(\| M(\theta , \varphi )-M(\overline{\theta },\overline{\varphi })\| , \| X({\theta , \varphi })-X(\overline{\theta },\overline{\varphi })\| {\lt} \sqrt{2}\varepsilon .\)
See [ SY25 ] , Lemma 13.
Let \(P \in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\). Further, let \(\varepsilon {\gt}0\) and \(\overline{\theta },\overline{\varphi }, \theta , \varphi \in \operatorname{\mathbb {R}}\) such that \(|\overline{\theta }-\theta |, |\overline{\varphi }- \varphi | \leq \varepsilon \). If \( \langle X(\overline{\theta },\overline{\varphi }),P \rangle {\gt}\sqrt{2}\varepsilon \) then \( \langle X(\theta , \varphi ),P \rangle {\gt}0. \)
See [ SY25 ] , Lemma 14.
Let \(P \in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\). Further, let \(\varepsilon , r{\gt}0\) and \(\overline{\theta },\overline{\varphi }, \theta , \varphi \in \operatorname{\mathbb {R}}\) such that \(|\overline{\theta }-\theta |, |\overline{\varphi }- \varphi | \leq \varepsilon \). If \( \| M(\overline{\theta },\overline{\varphi }) P \| {\gt} r + \sqrt{2}\varepsilon \) then \( \| M(\theta ,\varphi ) P \| {\gt} r. \)
See [ SY25 ] , Lemma 15.
Let \(\varepsilon {\gt}0\) and \(|\theta -\overline{\theta }|,|\varphi -\overline{\varphi }|,|\alpha -\overline{\alpha }|\leq \varepsilon \) then \(\| R(\alpha ) M(\theta , \varphi )-R(\overline{\alpha })M(\overline{\theta },\overline{\varphi })\| {\lt} \sqrt{5} \varepsilon .\)
See [ SY25 ] , Lemma 16.