Noperthedron

7 Rational Versions

Definition 44
#

We define the two functions \(\sin _{\mathbb {Q}}, \cos _{\mathbb {Q}}: \operatorname{\mathbb {R}}\to \operatorname{\mathbb {R}}\) by:

\begin{align*} \sin _{\mathbb {Q}}(x) & :=x-\frac{x^3}{3}+\frac{x^5}{5!}\mp \dots +\frac{x^{25}}{25!},\\ \cos _{\mathbb {Q}}(x) & :=1-\frac{x^2}{2}+\frac{x^4}{4!}\mp \dots +\frac{x^{24}}{24!}. \end{align*}

Further, by replacing \(\sin ,\cos \) with \(\sin _{\mathbb {Q}},\cos _{\mathbb {Q}}\) we define the functions

\[ R_{\operatorname{\mathbb {Q}}}(\alpha ), R'_{\operatorname{\mathbb {Q}}}(\alpha ), X_{\operatorname{\mathbb {Q}}}(\theta , \varphi ), M_{\operatorname{\mathbb {Q}}}(\theta , \varphi ), M_{\operatorname{\mathbb {Q}}}^{\theta }(\theta ,\varphi ),M_{\operatorname{\mathbb {Q}}}^{\varphi }(\theta ,\varphi ). \]
Lemma 45
\[ |\sin _{\mathbb {Q}}(x)-\sin (x)|\leq \frac{|x|^{27}}{27!} \quad \text{and} \quad |\cos _{\mathbb {Q}}(x)-\cos (x)|\leq \frac{|x|^{26}}{26!}. \]
Proof

Appeal to Taylor series bounds, using the fact that all absolute values of higher derivatives of sine and cosine never exceed 1.

Lemma 46

For every \(x\in [-4,4]\) it holds that

\[ |\sin _{\mathbb {Q}}(x)-\sin (x)| \leq \frac{\kappa }{7} \quad \text{and} \quad |\cos _{\mathbb {Q}}(x)-\cos (x)|\leq \frac{\kappa }{7}. \]
Proof

Straightforward numerical calculation from Lemma 45.

Lemma 47
#

Let \(A = (a_{i,j})_{1 \leq i \leq m,\ 1 \leq j \leq n} \in \operatorname{\mathbb {R}}^{m \times n}\) and \(\delta {\gt}0\). Assume that \(|a_{i,j}| \leq \delta \). Then it holds that \(\| A\| \leq \delta \sqrt{mn}.\)

Proof

For any \(v\in \operatorname{\mathbb {R}}^n\) we have

\begin{align*} \| Av\| ^2 & =\sum _{i=1}^m \left(\sum _{j=1}^na_{i,j}v_j\right)^2 \leq \sum _{i=1}^m\left(\sum _{j=1}^n \delta |v_j|\right)^2 = \delta ^2 m\left(\sum _{j=1}^n |v_j|\right)^2 \leq \delta ^2 m n \| v\| ^2 \end{align*}

using the Cauchy-Schwarz inequality. Dividing by \(\| v\| \) and taking the square root proves the claim.

Lemma 48

Let \(A(x,y)\) be an \(m\times n\) matrix with \(1 \leq m,n\leq 3\) such that every entry is of the form \(a_1(x)\cdot a_2(y)\) where \(a_i(z)\in \{ 0,1,-1,\pm \sin (z),\pm \cos (z)\} .\) Define \(A_{\mathbb {Q}}(x,y)\) by replacing \(\sin \) with \(\sin _{\mathbb {Q}}\) and \(\cos \) with \(\cos _{\mathbb {Q}}\). Then for every \(x,y\in [-4,4]\) it holds that \(\| A(x,y)-A_{\mathbb {Q}}(x,y)\| \leq \kappa \).

Proof

We’ve replaced the assumption \(a_i(z)\in \{ 0,1,-1,\pm \sin (z),\pm \cos (z)\} \) in [ SY25 ] ’s Lemma 40 with \(a_i(z)\in [-1,1]\).

By assumption, for fixed \(x,y\) every entry of \(A(x,y)-A_{\mathbb {Q}}(x,y)\) is of the form \(a b - \widetilde{a}\widetilde{b}\) for some \(a,b\in [-1,1]\) and \(|a-\widetilde{a}|,|b-\widetilde{b}|\leq \kappa /7\) by lemma 46. This implies that

\begin{align*} |ab-\widetilde{a}\widetilde{b}|& \leq |a b-a\widetilde{b}|+|a \widetilde{b}-\widetilde{a}\widetilde{b}| =|a|\cdot |b-\widetilde{b}|+|\widetilde{b}|\cdot |a-\widetilde{a}| \leq 1\cdot \kappa /7+(1+\kappa /7) \cdot \kappa /7 {\lt}\kappa /3. \end{align*}

So we can apply lemma 47 and obtain that \(\| A(x,y)-A_{\operatorname{\mathbb {Q}}}(x,y)\| {\lt}\kappa /3\cdot \sqrt{3\cdot 3}=\kappa \).

Corollary 49

Let \(\alpha ,\theta ,\varphi \in [-4,4]\). Then it holds that

\begin{align*} \| R(\alpha )-R_{\operatorname{\mathbb {Q}}}(\alpha )\| , \| R’(\alpha )-R_{\operatorname{\mathbb {Q}}}’(\alpha )\| ,\| X(\theta ,\varphi )-X_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\| , \| M(\theta , \varphi )-M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\| , \\ \| M^\theta (\theta ,\varphi )-M_{\operatorname{\mathbb {Q}}}^\theta (\theta ,\varphi )\| , \| M^\varphi (\theta ,\varphi ) - M_{\operatorname{\mathbb {Q}}}^\varphi (\theta ,\varphi )\| \leq \kappa . \end{align*}

Moreover,

\[ \| R_{\operatorname{\mathbb {Q}}}(\alpha )\| , \| R'_{\operatorname{\mathbb {Q}}}(\alpha )\| , \| X_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\| , \| M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\| , \| M_{\operatorname{\mathbb {Q}}}^{\theta }(\theta ,\varphi )\| , \| M_{\operatorname{\mathbb {Q}}}^{\varphi }(\theta ,\varphi )\| \leq 1+\kappa \]
Proof

The first statement is a direct application of lemma 48 and the second statement follows immediately after using lemma 12 and the triangle inequality.

Lemma 50
#

For \(1 \leq i \leq n\) let \((A_i,B_i)\) be pairs of real matrices, such that for each \(i\) the dimensions of \(A_i\) and \(B_i\) are equal. Assume moreover that the products \(A_1\cdots A_n\) and \(B_1 \cdots B_n\) are well defined. Finally, assume that \(\| A_i-B_i\| \leq \kappa \) and let \(\delta _i\geq \max (\| A_i\| ,\| B_i\| ,1)\). Then it holds that \(\| A_1\cdots A_n-B_1\cdots B_n\| \leq n\kappa \cdot \delta _1\cdots \delta _n\).

Proof

See [ SY25 ] , Lemma 42.

Lemma 51

Let \(\alpha , \theta , \varphi \in [-4,4]\), \(P\in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\) and let \(\widetilde{P}\) be a \(\kappa \)-rational approximation of \(P\). Set \(M = M(\theta , \varphi )\) and \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\theta = M^\theta (\theta , \varphi )\), \(M^\theta _{\operatorname{\mathbb {Q}}} = M^\theta _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\varphi = M^\varphi (\theta , \varphi )\), \(M^\varphi _{\operatorname{\mathbb {Q}}} = M^\varphi _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(R = R(\alpha )\), \(R_{\operatorname{\mathbb {Q}}} = R_{\operatorname{\mathbb {Q}}}(\alpha )\), \(R' = R'(\alpha )\), \(R'_{\operatorname{\mathbb {Q}}} = R'_{\operatorname{\mathbb {Q}}}(\alpha )\). Finally let \(w \in \operatorname{\mathbb {R}}^2\) with \(\| w\| = 1\). Then:

\begin{align} | \langle M P, w\rangle - \langle M_{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 3\kappa , \label{eq:boundskappa1} \\ | \langle M^\theta P, w\rangle - \langle M^\theta _{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 3\kappa ,\\ | \langle M^\varphi P, w\rangle - \langle M^\varphi _{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 3\kappa ,\\ | \langle R M P, w\rangle - \langle R_{\operatorname{\mathbb {Q}}} M_{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 4\kappa ,\label{eq:boundskappa4} \\ | \langle R’ M P, w\rangle - \langle R’_{\operatorname{\mathbb {Q}}} M_{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 4\kappa ,\\ | \langle R M^\theta P, w\rangle - \langle R_{\operatorname{\mathbb {Q}}} M^\theta _{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 4\kappa ,\\ | \langle R M^\varphi P, w\rangle - \langle R_{\operatorname{\mathbb {Q}}} M^\varphi _{\operatorname{\mathbb {Q}}} \widetilde{P}, w\rangle | & \leq 4\kappa . \end{align}
Proof

See [ SY25 ] , Lemma 44.

Theorem 52 Rational Global Theorem

Let \(\operatorname{\mathbf{P}}\) be a pointsymmetric convex polyhedron with radius \(\rho =1\) and \(\widetilde{\operatorname{\mathbf{P}}}\) a \(\kappa \)-rational approximation. Let \(\widetilde{S} \in \widetilde{\operatorname{\mathbf{P}}}\). Further let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Let \(w\in \operatorname{\mathbb {Q}}^2\) be a unit vector. Denote \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1, \overline{\varphi }_1)\), \( \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2, \overline{\varphi }_2)\) as well as \(\overline{M_1}^{\theta } :=M_{\operatorname{\mathbb {Q}}}^\theta (\overline{\theta }_1, \overline{\varphi }_1)\), \(\overline{M_1}^{\varphi } :=M_{\operatorname{\mathbb {Q}}}^\varphi (\overline{\theta }_1, \overline{\varphi }_1)\) and analogously for \(\overline{M_2}^{\theta }, \overline{M_2}^{\varphi }\). Finally set

\begin{align*} G^{\operatorname{\mathbb {Q}}}& :=\langle R_{\operatorname{\mathbb {Q}}}(\overline{\alpha }) \overline{M_1}\widetilde{S},w \rangle - \varepsilon \cdot \big(|\langle R_{\operatorname{\mathbb {Q}}}’(\overline{\alpha }) \overline{M_1}\widetilde{S},w \rangle |+|\langle R_{\operatorname{\mathbb {Q}}}(\overline{\alpha }) \overline{M_1}^\theta \widetilde{S},w \rangle |+|\langle R_{\operatorname{\mathbb {Q}}}(\overline{\alpha }) \overline{M_1}^\varphi \widetilde{S},w \rangle |\big) \\ & \hspace{11cm}- 9\varepsilon ^2/2 - 4\kappa ( 1 + 3 \varepsilon ),\\ H^{\operatorname{\mathbb {Q}}}_P & :=\langle \overline{M_2}P,w \rangle + \varepsilon \cdot \big(|\langle \overline{M_2}^\theta P,w \rangle |+|\langle \overline{M_2}^\varphi P,w \rangle |\big) + 2\varepsilon ^2 + 3\kappa ( 1+2\varepsilon ). \end{align*}

If \(G^{\operatorname{\mathbb {Q}}}{\gt}\max _{P\in \widetilde{\operatorname{\mathbf{P}}}} H^{\operatorname{\mathbb {Q}}}_P\) then there does not exist a solution to Rupert’s condition to \(\operatorname{\mathbf{P}}\) with

\[ (\theta _1,\varphi _1,\theta _2,\varphi _2,\alpha ) \in [\overline{\theta }_1\pm \varepsilon ,\overline{\varphi }_1\pm \varepsilon ,\overline{\theta }_2\pm \varepsilon ,\overline{\varphi }_2\pm \varepsilon ,\overline{\alpha }\pm \varepsilon ]. \]
Proof
Definition 53
#

Let \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\) and \(M_{\operatorname{\mathbb {Q}}} :=M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Three points \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) with \(\| \widetilde{P}_1\| , \| \widetilde{P}_2\| , \| \widetilde{P}_3\| \leq 1+\kappa \) are called \(\varepsilon \)-\(\kappa \)-spanning for \((\theta , \varphi )\) if it holds that:

\begin{align*} \langle R(\pi /2) M_{\operatorname{\mathbb {Q}}} \widetilde{P}_1,M_{\operatorname{\mathbb {Q}}} \widetilde{P}_{2}\rangle {\gt} 2 \varepsilon (\sqrt{2} + \varepsilon ) + 6\kappa ,\\ \langle R(\pi /2) M_{\operatorname{\mathbb {Q}}} \widetilde{P}_2,M_{\operatorname{\mathbb {Q}}} \widetilde{P}_{3}\rangle {\gt} 2 \varepsilon (\sqrt{2} + \varepsilon ) + 6\kappa ,\\ \langle R(\pi /2) M_{\operatorname{\mathbb {Q}}} \widetilde{P}_3,M_{\operatorname{\mathbb {Q}}} \widetilde{P}_{1}\rangle {\gt} 2 \varepsilon (\sqrt{2} + \varepsilon ) + 6\kappa . \end{align*}

Let \(P_1, P_2, P_3 \in \operatorname{\mathbb {R}}^3\) with \(\| P_i\| \leq 1\) and \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) be their \(\kappa \)-rational approximations. Assume that \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for some \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\), then \(P_1, P_2, P_3\) are \(\varepsilon \)-spanning for \(\theta , \varphi \).

Proof

See [ SY25 ] , Lemma 46.

Lemma 55

Let \(P,Q \in \operatorname{\mathbb {R}}^3\) with \(\| P\| ,\| Q\| \leq 1\) and \(\widetilde{P},\widetilde{Q}\) some respective \(\kappa \)-rational approximations. Moreover, let \(\alpha , \theta , \varphi \in \operatorname{\mathbb {R}}\in [-4,4]\) and set \(X = X(\theta , \varphi )\), \(X_{\operatorname{\mathbb {Q}}} = X_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(M = M(\theta , \varphi )\), \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Then

\begin{align} |\langle X, P \rangle - \langle X_{\operatorname{\mathbb {Q}}}, \widetilde{P} \rangle | & \leq 3 \kappa , \label{eq:boundskappa3.1}\\ |\langle MP, MQ \rangle - \langle M_{\operatorname{\mathbb {Q}}} \widetilde{P}, M_{\operatorname{\mathbb {Q}}}\widetilde{Q} \rangle | & \leq 5 \kappa , \label{eq:boundskappa3.3}\\ |\| M Q \| - \| M_{\operatorname{\mathbb {Q}}}\widetilde{Q} \| | & \leq 3 \kappa .\label{eq:boundskappa3.2} \end{align}
Proof

See [ SY25 ] , Lemma 49.

Corollary 56

In the setting of lemma 55 let additionally \(\overline{\theta }, \overline{\varphi }\in \operatorname{\mathbb {R}}\cap [-4,4]\) and set \(\overline{M} = M(\overline{\theta }, \overline{\varphi })\), \(\overline{M}_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\overline{\theta }, \overline{\varphi })\). Then

\[ |\| R(\alpha ) M P - \overline{M} Q\| - \| R_{\operatorname{\mathbb {Q}}}(\alpha ) M_{\operatorname{\mathbb {Q}}} \widetilde{P} - \overline{M}_{\operatorname{\mathbb {Q}}} \widetilde{Q}\| | \leq 6 \kappa .\label{eq:boundskappa3.4} \]
Proof

See [ SY25 ] , Corollary 50.

Corollary 57

In the setting of lemma 55, let \(\sqrt[+]{x}\) be an upper-\(\operatorname{\mathbb {Q}}\)-square-root function and set \(\| x\| _{+} :=\sqrt[+]{\| x\| ^2}\). Set

\[ A = \frac{\langle M P, M(P-Q)\rangle - 2 \varepsilon \| P-Q\| \cdot (\sqrt{2}+\varepsilon )}{ \big(\| M P\| +\sqrt{2} \varepsilon \big) \cdot \big(\| M(P-Q)\| +2 \sqrt{2} \varepsilon \big)} \]

as well as

\[ A_{\operatorname{\mathbb {Q}}} = \frac{\langle M_{\operatorname{\mathbb {Q}}} \widetilde{P}, M_{\operatorname{\mathbb {Q}}} (\widetilde{P}-\widetilde{Q})\rangle - 10\kappa - 2 \varepsilon ( \| \widetilde{P}-\widetilde{Q}\| _{+} + 2 \kappa ) \cdot (\sqrt{2}+\varepsilon )}{ \big(\| M_{\operatorname{\mathbb {Q}}} \widetilde{P}\| _{+}+\sqrt{2} \varepsilon + 3\kappa \big) \cdot \big(\| M_{\operatorname{\mathbb {Q}}}(\widetilde{P}-\widetilde{Q})\| _{+}+2 \sqrt{2} \varepsilon + 6\kappa \big)}. \]

Then it holds that \(A \geq A_{\operatorname{\mathbb {Q}}}\).

Proof

See [ SY25 ] , Corollary 51.

Theorem 58 Rational Local Theorem

Let \(\operatorname{\mathbf{P}}\) be a polyhedron with radius \(\rho =1\) and \(\widetilde{P}_i\) be a \(\kappa \)-rational approximation of \(P_i \in \operatorname{\mathbf{P}}\). Set \(\widetilde{\operatorname{\mathbf{P}}} = \{ \widetilde{P}_i \text{ for } P_i \in \operatorname{\mathbf{P}}\} \). Let \(P_1, P_2, P_3, Q_1, Q_2, Q_3 \in \operatorname{\mathbf{P}}\) be not necessarily distinct and assume that \(P_1, P_2, P_3\) and \(Q_1, Q_2, Q_3\) are congruent. Let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Set \(\overline{X_1}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{X_2}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\) as well as \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\). Assume that there exist \(\sigma _P, \sigma _Q \in \{ 0,1\} \) such that

\[ (-1)^{\sigma _P} \langle \overline{X_1},\widetilde{P}_i\rangle {\gt}\sqrt{2}\varepsilon + 3\kappa \quad \text{and} \quad (-1)^{\sigma _Q} \langle \overline{X_2}, \widetilde{Q}_i\rangle {\gt}\sqrt{2}\varepsilon + 3\kappa , \tag {A$^{\operatorname{\mathbb {Q}}}_\varepsilon $} \]

for all \(i=1,2,3\). Moreover, assume that \(\widetilde{P}_1,\widetilde{P}_2,\widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_1,\overline{\varphi }_1)\) and that \(\widetilde{Q}_1,\widetilde{Q}_2,\widetilde{Q}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_2,\overline{\varphi }_2)\). Let \(\sqrt[+]{x}\) and \(\sqrt[-]{x}\) be upper- and lower-\(\operatorname{\mathbb {Q}}\)-square-root functions, then set \(\| Z\| _{+} :=\sqrt[+]{\| Z\| ^2}\) and \(\| Z\| _{-} :=\sqrt[-]{\| Z\| ^2}\) for \(Z \in \operatorname{\mathbb {Q}}^n\). Finally, assume that for all \(i = 1,2,3\) and any \(\widetilde{Q}_j \in \widetilde{\operatorname{\mathbf{P}}} \setminus \widetilde{Q}_i\) it holds that

\[ \frac{\langle \overline{M_2}\widetilde{Q}_i,\overline{M_2}(\widetilde{Q}_i-\widetilde{Q}_j)\rangle - 10\kappa - 2 \varepsilon ( \| \widetilde{Q}_i-\widetilde{Q}_j\| _{+} + 2 \kappa ) \cdot (\sqrt{2}+\varepsilon )}{ \big(\| \overline{M_2}\widetilde{Q}_i\| _{+}+\sqrt{2} \varepsilon + 3\kappa \big) \cdot \big(\| \overline{M_2}(\widetilde{Q}_i-\widetilde{Q}_j)\| _{+}+2 \sqrt{2} \varepsilon + 6\kappa \big)} {\gt} \frac{\sqrt{5} \varepsilon + \delta }{r}, \tag {B$^{\operatorname{\mathbb {Q}}}_\varepsilon $} \]

for some \(r {\gt}0\) such that \(\min _{i=1,2,3}\| \overline{M_2}\widetilde{Q}_i \| _{-} {\gt} r + \sqrt{2} \varepsilon + 3\kappa \) and for some \(\delta \in \operatorname{\mathbb {R}}\) with

\[ \delta = \max _{i=1,2,3}\left\| R_{\operatorname{\mathbb {Q}}}(\overline{\alpha }) \overline{M_1}\widetilde{P}_i-\overline{M_2}\widetilde{Q}_i\right\| _{+}/2 + 3\kappa . \]

Then there exists no solution to Rupert’s problem \(R(\alpha ) M(\theta _1,\varphi _1)\operatorname{\mathbf{P}}\subset M(\theta _2,\varphi _2)\operatorname{\mathbf{P}}^\circ \) with

\[ (\theta _1, \varphi _1, \theta _2, \varphi _2, \alpha ) \in [\overline{\theta }_1\pm \varepsilon ,\overline{\varphi }_1\pm \varepsilon ,\overline{\theta }_2\pm \varepsilon ,\overline{\varphi }_2\pm \varepsilon ,\overline{\alpha }\pm \varepsilon ] \subseteq \operatorname{\mathbb {R}}^5. \]
Proof

,