7 Rational Versions
We define the two functions \(\sin _{\mathbb {Q}}, \cos _{\mathbb {Q}}: \operatorname{\mathbb {R}}\to \operatorname{\mathbb {R}}\) by:
Further, by replacing \(\sin ,\cos \) with \(\sin _{\mathbb {Q}},\cos _{\mathbb {Q}}\) we define the functions
Appeal to Taylor series bounds, using the fact that all absolute values of higher derivatives of sine and cosine never exceed 1.
For every \(x\in [-4,4]\) it holds that
Straightforward numerical calculation from Lemma 43.
Let \(A = (a_{i,j})_{1 \leq i \leq m,\ 1 \leq j \leq n} \in \operatorname{\mathbb {R}}^{m \times n}\) and \(\delta {\gt}0\). Assume that \(|a_{i,j}| \leq \delta \). Then it holds that \(\| A\| \leq \delta \sqrt{mn}.\)
For any \(v\in \operatorname{\mathbb {R}}^n\) we have
using the Cauchy-Schwarz inequality. Dividing by \(\| v\| \) and taking the square root proves the claim.
Let \(A(x,y)\) be an \(m\times n\) matrix with \(1 \leq m,n\leq 3\) such that every entry is in \([-1,1]\).of the form \(a_1(x)\cdot a_2(y)\) where \(a_i(z) \in [-1,1]\). Define \(A_{\mathbb {Q}}(x,y)\) by replacing \(\sin \) with \(\sin _{\mathbb {Q}}\) and \(\cos \) with \(\cos _{\mathbb {Q}}\). Then for every \(x,y\in [-4,4]\) it holds that \(\| A(x,y)-A_{\mathbb {Q}}(x,y)\| \leq \kappa \).
We’ve replaced the assumption \(a_i(z)\in \{ 0,1,-1,\pm \sin (z),\pm \cos (z)\} \) in [ SY25 ] ’s Lemma 40 with \(a_i(z)\in [-1,1]\).
By assumption, for fixed \(x,y\) every entry of \(A(x,y)-A_{\mathbb {Q}}(x,y)\) is of the form \(a b - \widetilde{a}\widetilde{b}\) for some \(a,b\in [-1,1]\) and \(|a-\widetilde{a}|,|b-\widetilde{b}|\leq \kappa /7\) by lemma 44. This implies that
So we can apply lemma 45 and obtain that \(\| A(x,y)-A_{\operatorname{\mathbb {Q}}}(x,y)\| {\lt}\kappa /3\cdot \sqrt{3\cdot 3}=\kappa \).
Let \(\alpha ,\theta ,\varphi \in [-4,4]\). Then it holds that
Moreover,
For \(1 \leq i \leq n\) let \((A_i,B_i)\) be pairs of real matrices, such that for each \(i\) the dimensions of \(A_i\) and \(B_i\) are equal. Assume moreover that the products \(A_1\cdots A_n\) and \(B_1 \cdots B_n\) are well defined. Finally, assume that \(\| A_i-B_i\| \leq \kappa \) and let \(\delta _i\geq \max (\| A_i\| ,\| B_i\| ,1)\). Then it holds that \(\| A_1\cdots A_n-B_1\cdots B_n\| \leq n\kappa \cdot \delta _1\cdots \delta _n\).
See [ SY25 ] , Lemma 42.
Let \(\alpha , \theta , \varphi \in [-4,4]\), \(P\in \operatorname{\mathbb {R}}^3\) with \(\| P\| \leq 1\) and let \(\widetilde{P}\) be a \(\kappa \)-rational approximation of \(P\). Set \(M = M(\theta , \varphi )\) and \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\theta = M^\theta (\theta , \varphi )\), \(M^\theta _{\operatorname{\mathbb {Q}}} = M^\theta _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\), \(M^\varphi = M^\varphi (\theta , \varphi )\), \(M^\varphi _{\operatorname{\mathbb {Q}}} = M^\varphi _{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(R = R(\alpha )\), \(R_{\operatorname{\mathbb {Q}}} = R_{\operatorname{\mathbb {Q}}}(\alpha )\), \(R' = R'(\alpha )\), \(R'_{\operatorname{\mathbb {Q}}} = R'_{\operatorname{\mathbb {Q}}}(\alpha )\). Finally let \(w \in \operatorname{\mathbb {R}}^2\) with \(\| w\| = 1\). Then:
See [ SY25 ] , Lemma 44.
Let \(\operatorname{\mathbf{P}}\) be a pointsymmetric convex polyhedron with radius \(\rho =1\) and \(\widetilde{\operatorname{\mathbf{P}}}\) a \(\kappa \)-rational approximation. Let \(\widetilde{S} \in \widetilde{\operatorname{\mathbf{P}}}\). Further let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Let \(w\in \operatorname{\mathbb {Q}}^2\) be a unit vector. Denote \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1, \overline{\varphi }_1)\), \( \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2, \overline{\varphi }_2)\) as well as \(\overline{M_1}^{\theta } :=M_{\operatorname{\mathbb {Q}}}^\theta (\overline{\theta }_1, \overline{\varphi }_1)\), \(\overline{M_1}^{\varphi } :=M_{\operatorname{\mathbb {Q}}}^\varphi (\overline{\theta }_1, \overline{\varphi }_1)\) and analogously for \(\overline{M_2}^{\theta }, \overline{M_2}^{\varphi }\). Finally set
If \(G^{\operatorname{\mathbb {Q}}}{\gt}\max _{P\in \widetilde{\operatorname{\mathbf{P}}}} H^{\operatorname{\mathbb {Q}}}_P\) then there does not exist a solution to Rupert’s condition to \(\operatorname{\mathbf{P}}\) with
Let \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\) and \(M_{\operatorname{\mathbb {Q}}} :=M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Three points \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) with \(\| \widetilde{P}_1\| , \| \widetilde{P}_2\| , \| \widetilde{P}_3\| \leq 1+\kappa \) are called \(\varepsilon \)-\(\kappa \)-spanning for \((\theta , \varphi )\) if it holds that:
Let \(P_1, P_2, P_3 \in \operatorname{\mathbb {R}}^3\) with \(\| P_i\| \leq 1\) and \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3 \in \operatorname{\mathbb {Q}}^3\) be their \(\kappa \)-rational approximations. Assume that \(\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for some \(\theta , \varphi \in \operatorname{\mathbb {Q}}\cap [-4,4]\), then \(P_1, P_2, P_3\) are \(\varepsilon \)-spanning for \(\theta , \varphi \).
See [ SY25 ] , Lemma 46.
Let \(P,Q \in \operatorname{\mathbb {R}}^3\) with \(\| P\| ,\| Q\| \leq 1\) and \(\widetilde{P},\widetilde{Q}\) some respective \(\kappa \)-rational approximations. Moreover, let \(\alpha , \theta , \varphi \in \operatorname{\mathbb {R}}\in [-4,4]\) and set \(X = X(\theta , \varphi )\), \(X_{\operatorname{\mathbb {Q}}} = X_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\) as well as \(M = M(\theta , \varphi )\), \(M_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\theta , \varphi )\). Then
See [ SY25 ] , Lemma 49.
In the setting of lemma 53 let additionally \(\overline{\theta }, \overline{\varphi }\in \operatorname{\mathbb {R}}\cap [-4,4]\) and set \(\overline{M} = M(\overline{\theta }, \overline{\varphi })\), \(\overline{M}_{\operatorname{\mathbb {Q}}} = M_{\operatorname{\mathbb {Q}}}(\overline{\theta }, \overline{\varphi })\). Then
See [ SY25 ] , Corollary 50.
In the setting of lemma 53, let \(\sqrt[+]{x}\) be an upper-\(\operatorname{\mathbb {Q}}\)-square-root function and set \(\| x\| _{+} :=\sqrt[+]{\| x\| ^2}\). Set
as well as
Then it holds that \(A \geq A_{\operatorname{\mathbb {Q}}}\).
See [ SY25 ] , Corollary 51.
Let \(\operatorname{\mathbf{P}}\) be a polyhedron with radius \(\rho =1\) and \(\widetilde{P}_i\) be a \(\kappa \)-rational approximation of \(P_i \in \operatorname{\mathbf{P}}\). Set \(\widetilde{\operatorname{\mathbf{P}}} = \{ \widetilde{P}_i \text{ for } P_i \in \operatorname{\mathbf{P}}\} \). Let \(P_1, P_2, P_3, Q_1, Q_2, Q_3 \in \operatorname{\mathbf{P}}\) be not necessarily distinct and assume that \(P_1, P_2, P_3\) and \(Q_1, Q_2, Q_3\) are congruent. Let \(\varepsilon {\gt}0\) and \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {Q}}\cap [-4,4]\). Set \(\overline{X_1}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{X_2}:=X_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\) as well as \(\overline{M_1}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_1,\overline{\varphi }_1), \overline{M_2}:=M_{\operatorname{\mathbb {Q}}}(\overline{\theta }_2,\overline{\varphi }_2)\). Assume that there exist \(\sigma _P, \sigma _Q \in \{ 0,1\} \) such that
for all \(i=1,2,3\). Moreover, assume that \(\widetilde{P}_1,\widetilde{P}_2,\widetilde{P}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_1,\overline{\varphi }_1)\) and that \(\widetilde{Q}_1,\widetilde{Q}_2,\widetilde{Q}_3\) are \(\varepsilon \)-\(\kappa \)-spanning for \((\overline{\theta }_2,\overline{\varphi }_2)\). Let \(\sqrt[+]{x}\) and \(\sqrt[-]{x}\) be upper- and lower-\(\operatorname{\mathbb {Q}}\)-square-root functions, then set \(\| Z\| _{+} :=\sqrt[+]{\| Z\| ^2}\) and \(\| Z\| _{-} :=\sqrt[-]{\| Z\| ^2}\) for \(Z \in \operatorname{\mathbb {Q}}^n\). Finally, assume that for all \(i = 1,2,3\) and any \(\widetilde{Q}_j \in \widetilde{\operatorname{\mathbf{P}}} \setminus \widetilde{Q}_i\) it holds that
for some \(r {\gt}0\) such that \(\min _{i=1,2,3}\| \overline{M_2}\widetilde{Q}_i \| _{-} {\gt} r + \sqrt{2} \varepsilon + 3\kappa \) and for some \(\delta \in \operatorname{\mathbb {R}}\) with
Then there exists no solution to Rupert’s problem \(R(\alpha ) M(\theta _1,\varphi _1)\operatorname{\mathbf{P}}\subset M(\theta _2,\varphi _2)\operatorname{\mathbf{P}}^\circ \) with
,