5 The Global Theorem
Suppose \(V = V_1, \ldots , V_m \subseteq \operatorname{\mathbb {R}}^n\) be a finite sequence of points. Suppose \(\mathsf{Co}(V)\) is its convex hull. Let \(S \in \mathsf{Co}(V)\) and \(w \in \operatorname{\mathbb {R}}^n\) be given. then
This is a mild generalization of [ SY25 ] , Lemma 18.
Since \(S \in \mathsf{Co}(V)\), we have
for some \(\lambda _1,\ldots ,\lambda _m \in [0,1]\) with
Therefore
as required.
Let \(S \in \operatorname{\mathbb {R}}^3\) and \(w \in \operatorname{\mathbb {R}}^2\) be unit vectors and set \(f(x_1,x_2,x_3) = \langle R(x_3) M(x_1,x_2)S,w \rangle \). Then for all \(x_1,x_2,x_3 \in \operatorname{\mathbb {R}}\) and any \(i,j \in \{ 1,2,3\} \) it holds that
See [ SY25 ] , Lemma 19.
Let \(f:\operatorname{\mathbb {R}}^n\to \operatorname{\mathbb {R}}\) be a \(C^2\)-function and \(x_1,\dots ,x_n,y_1,\dots ,y_n \in \operatorname{\mathbb {R}}\) such that \(|x_1-y_1|,\dots ,|x_n-y_n|\leq \varepsilon \). If \( \left|\partial _{x_i}\partial _{x_j}f(v)\right| \leq 1 \) for all \(i,j \in \{ 1,\dots ,n\} \) and all \(v \in \operatorname{\mathbb {R}}^n\), then
See [ SY25 ] , Lemma 20.
The partial derivatives of all relevant rotations, projections, and inner products used in the Global Theorem are as expected. Specifically:
- \[ f^\alpha (\theta ,\varphi ,\alpha ) = \langle R'(\alpha ) M(\theta , \varphi ) S, w \rangle \]
- \[ f^\theta (\theta ,\varphi ,\alpha ) = \langle R(\alpha ) M^\theta (\theta , \varphi ) S, w \rangle \]
- \[ f^\varphi (\theta ,\varphi ,\alpha ) = \langle R(\alpha ) M^\varphi (\theta , \varphi ) S, w \rangle \]
- \[ g^\theta (\theta ,\varphi ) = \langle M^\theta (\theta , \varphi ) P, w \rangle \]
- \[ g^\varphi (\theta ,\varphi ) = \langle M^\varphi (\theta , \varphi ) P, w \rangle \]
where \(f(\theta ,\varphi ,\alpha ) = \langle R(\alpha ) M(\theta ,\varphi ) S / \| S\| , w\rangle \) and \(g(\theta ,\varphi ) = \langle M(\theta ,\varphi ) P / \| P\| , w\rangle \).
By basic properties of derivatives.
Let \(\operatorname{\mathbf{P}}\) be a pointsymmetric convex polyhedron with radius \(\rho =1\) and let \(S \in \operatorname{\mathbf{P}}\). Further let \(\overline{\theta }_1,\overline{\varphi }_1,\overline{\theta }_2,\overline{\varphi }_2,\overline{\alpha }\in \operatorname{\mathbb {R}}\) and let \(w\in \operatorname{\mathbb {R}}^2\) be a unit vector. Denote \(\overline{M_1}:=M(\overline{\theta }_1, \overline{\varphi }_1)\), \( \overline{M_2}:=M(\overline{\theta }_2, \overline{\varphi }_2)\) as well as \(\overline{M_1}^{\theta } :=M^\theta (\overline{\theta }_1, \overline{\varphi }_1)\), \(\overline{M_1}^{\varphi } :=M^\varphi (\overline{\theta }_1, \overline{\varphi }_1)\) and analogously for \(\overline{M_2}^{\theta }, \overline{M_2}^{\varphi }\). Finally set
If \(G{\gt}\max _{P\in \operatorname{\mathbf{P}}} H_P\) then there does not exist a solution to Rupert’s condition with
See [ SY25 ] , Section 4.2.